A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells
نویسندگان
چکیده
The most highly conserved noncoding elements (HCNEs) in mammalian genomes cluster within regions enriched for genes encoding developmentally important transcription factors (TFs). This suggests that HCNE-rich regions may contain key regulatory controls involved in development. We explored this by examining histone methylation in mouse embryonic stem (ES) cells across 56 large HCNE-rich loci. We identified a specific modification pattern, termed "bivalent domains," consisting of large regions of H3 lysine 27 methylation harboring smaller regions of H3 lysine 4 methylation. Bivalent domains tend to coincide with TF genes expressed at low levels. We propose that bivalent domains silence developmental genes in ES cells while keeping them poised for activation. We also found striking correspondences between genome sequence and histone methylation in ES cells, which become notably weaker in differentiated cells. These results highlight the importance of DNA sequence in defining the initial epigenetic landscape and suggest a novel chromatin-based mechanism for maintaining pluripotency.
منابع مشابه
Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo.
Developmental regulatory genes have both activating (H3K4me3) and repressive (H3K27me3) histone modifications in embryonic stem cells (ESCs). This bivalent configuration is thought to maintain lineage commitment programs in a poised state. However, establishing physiological relevance has been complicated by the high number of cells required for chromatin immunoprecipitation (ChIP). We develope...
متن کاملBivalent histone modifications in early embryogenesis.
Histone modifications influence the interactions of transcriptional regulators with chromatin. Studies in embryos and embryonic stem (ES) cells have uncovered histone modification patterns that are diagnostic for different cell types and developmental stages. For example, bivalent domains consisting of regions of H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 4 trimethylation (H3K4me3) ma...
متن کاملRing1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment.
Pluripotent cells develop within the inner cell mass of blastocysts, a mosaic of cells surrounded by an extra-embryonic layer, the trophectoderm. We show that a set of somatic lineage regulators (including Hox, Gata and Sox factors) that carry bivalent chromatin enriched in H3K27me3 and H3K4me2 are selectively targeted by Suv39h1-mediated H3K9me3 and de novo DNA methylation in extra-embryonic v...
متن کاملRegulation of Pluripotency and Self- Renewal of ESCs through Epigenetic- Threshold Modulation and mRNA Pruning
Embryonic stem cell (ESC) pluripotency requires bivalent epigenetic modifications of key developmental genes regulated by various transcription factors and chromatin-modifying enzymes. How these factors coordinate with one another to maintain the bivalent chromatin state so that ESCs can undergo rapid self-renewal while retaining pluripotency is poorly understood. We report that Utf1, a target ...
متن کاملConcise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells.
Epigenetic mechanisms, such as histone modifications and DNA methylation, have been shown to play a key role in the regulation of gene transcription. Results of recent studies indicate that a novel "bivalent" chromatin structure marks key developmental genes in embryonic stem cells (ESCs), wherein a number of untranscribed lineage-control genes, such as Sox1, Nkx2-2, Msx1, Irx3, and Pax3, are e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 125 شماره
صفحات -
تاریخ انتشار 2006